USING ITERATION TO MODEL POPULATION
GROWTH (Optional Section)

Although I shall henceforth adopt the habit of referring to the variable X as “the pop-
ulation,” there are countless situations outside population biology where . . . [iteration
of functions] applies. . . . Examples in economics include models for the relationship
between commodity quantity and price, for the theory of business cycles, and for the
temporal sequences generated by various other economic quantities.

... I would therefore urge that people be introduced to, say, [the iteration
process for f(x) = kx(1 — x)] early in their mathematical education. This equation can
be studied phenomenologically by iterating it on a calculator, or even by hand. Its
study does not involve as much conceptual sophistication as does elementary calcu-
lus. Such study would greatly enrich the student’s intuition about nonlinear systems.
—Biologist Robert M. May, “Simple mathematical models with very complicated dynamics,”
Nature, vol. 261 (1976), pp. 459-467.

The size of a population or its genetic makeup may change from one generation to the
next. In the study of discrete dynamics we use functions and the iteration process (from
Section 3.5) to investigate and analyze changes such as these that occur over discrete
intervals of time. We begin by introducing the notion of a fixed point of a function.

If we start with a function f and an input x, it’s usually not the case that f(x) turns
out to be the same as x itself. That is, usually, the output is not the same as the input.
But sometimes this does happen. Take, for example, the function f(x) = 3x — 2 and
the input x = 1. Then we have

=31 —-2=1
So for this particular function the input x = 1 is an instance where “input = output.”
The input x = 1 in this case is called a fixed point of the function f(x) = 3x — 2. In
the box that follows, we give the general definition of a fixed point.

m Fixed Point of a Function

A fixed point of a function fis an input EXAMPLE

x in the domain of f'such that Both 0 and 1 are fixed points for
_ f(x) = x? because f(0) = 0> = 0 and
fo) = x fy=1r=1

EXAMPLE

SOLUTION

Finding Fixed Points
Find the fixed points (if any) for each function:

@ fx)=1-x (b) glx) =1+ x; (€) h(x) =x>—x—3.

(a) We’re looking for a number x such that f(x) = x. In view of the definition of f, this
last equation becomes

l—x=x
and therefore
X = 5
This result shows that the function f has one fixed point; itis x = 1/2.
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(a) The fixed point of f is 1/2.

Figure 1

(b) If x is a fixed point of g(x) = 1 + x, we have
1+x=x

But then subtracting x from both sides of this last equation yields 1 = 0, which is
impossible. We conclude from this that there is no fixed point for the function
gx)=1+nx.

(¢) The fixed points (if any) are the solutions of the quadratic equation

x? — x — 3 = x. Subtracting x from both sides of this equation, we have

X¥—-—2x—3=0
x=3)x+1)=0

Looking at this last equation, we can see that there are two roots: 3 and — 1. Each
of these numbers is a fixed point for the given function A(x) = x% — x — 3. That is,
h(3) = 3 and h(—1) = —1. [You should verify each of these last two statements
for yourself by actually computing 4(3) and A(—1).] [ ]

A fixed point of a function can be interpreted geometrically: It is the x-coordinate
of a point where the graph of the given function intersects the line y = x. Figure 1
shows the fixed points for the functions in the example that we’ve just completed.

Fixed points are related to the iteration process in several ways. Suppose that a
number a is a fixed point of the function f. Then by definition we have f(a) = a,
which says that the first iterate of a is equal to a itself. Similarly, all of the subsequent
iterates of the fixed point a will be equal to a. For instance, for the second iterate
we have

f(f(a)) = fla) substituting a for f(a) on the left-hand side
=a again because f(a) = a

This shows that the second iterate is equal to a. The same type of calculation will
show that any subsequent iterate of the fixed point a is equal to a.

Another connection between fixed points and iteration is this: for some func-
tions, a fixed point can be a “target value” for other iterates. We’ll explain this using
Figure 2.

y
y y=x
/ glx)=1+x |
I
y=x 1 |
f ! X
3
/ x
h(x)=x*—x—3
(b) The function g has no fixed points. (c) The fixed points of & are —1 and 3.

Fixed points for the functions in Example 1.



Figure 2

The first four steps in the iteration
process for f(x) = 3x + 2 with
xo = 1.
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y y=x
T 1
f(x) =X+ 2
4,,
3,,
2,
1,,
t X
1 2 3 4 5

Figure 2 shows the first four steps in the iteration process for f(x) = 3x + 2 with
xo = 1. (See Section 3.5 if you need to review graphical iteration.) As indicated in
Figure 2, the input 4 is a fixed point for the function f, and the iteration process fol-
lows a staircase pattern that approaches the point (4, 4). We say in this case that the
iterates of xyp = 1 approach the fixed point 4 and that this target value 4 is an
attracting fixed point of the function f. Table 1 gives you a more numerical look at
what is meant by saying that the iterates approach the target value 4.

In the table, notice, for example, that

x5 differs from 4 by less than 0.1
X, differs from 4 by less than 0.01
and x5 differs from 4 by less than 0.0001

What’s important here is that the differences between the iterates and 4 can be made
as small as we please by carrying out the iteration process sufficiently far. The idea

TABLE 1 The Iterates Approach 4

X1 2.5

X2 3.25

X3 3.625

X4 3.8125 X1 3.9985 ...

X5 3.906 . .. X12 3.99926 . ..
X6 3953 ... X13 3.99963 . ..
X7 3.976 ... X14 3.99981 . ..
Xg 3.988... X15 3.999908 . ..
Xo 3.9941 ... X20 3.9999971 . ..

X10 3.9970 ... X2s 3.999999910. . .




4.3.4

y
3 i
y
Il \\ Il Il Il Il Il _0 1
l T T X
-0.5 0.4 —0.3 0.2 s
T —0.1
g(x)=x*—0.5
T -0.2
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Figure 3 Figure 4
The iterates of xo = —0.1 under the function g(x) = x> — 0.5 The iterates of xo = 1.25 under the function f(x) = x> move
approach the attracting fixed point3 (1 — V3) = —0.366. away from the repelling fixed point 1.

of a target value or [imit is made more precise in calculus. But for our purposes,
Figure 2 and Table 1 will certainly give you an intuitive understanding of the idea
and what we mean by saying that the iterates approach 4.

Figures 3 and 4 show two more ways in which the iteration process may
relate to fixed points. In Figure 3 there is an attracting fixed point for the iterates of
xo = —0.1, but this time the iteration process approaches the fixed point through a
spiral pattern rather than a staircase pattern. To find the fixed point (and thereby
determine the number that the iterates are approaching), we need to solve the quadratic
equation x> — 0.5 = x. As you should check for yourself by means of the qua-
dratic formula and then a calculator, the relevant root here is (1 —\/3)/2 = —0.366.
Notice that this value is consistent with Figure 3. In Figure 4 the fixed point 1 is a
repelling fixed point for the iterates of xo = 1.25. As Figure 4 indicates, the iterates
of xop = 1.25 move farther and farther away from the value 1. Indeed, as you can
check with a calculator, the first five iterates of 1.25 are as follows (we’re rounding
to two decimal places):

X ~156 x,~244 x,~596 x,~3553  x3~1262.18

The iteration process for functions is often applied in the study of population
growth. The word “population” here is used in a general sense. It needn’t refer only
to human populations. For instance, biological or ecological studies may involve an-
imal, insect, or bacterial populations. (Also, see the quotation at the beginning of this
section.) The following equation defines one type of quadratic function that has been
studied extensively in this context:

S = k(1 — x) 1)
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In using this idealized model, we assume that the population size is measured by a
number between 0 and 1, where 1 corresponds to the maximum possible popula-
tion size in the given environment and 0 corresponds to the case in which the pop-
ulation has become extinct. We start with a given input xy (0 = xo = 1) that
represents the fraction of the maximum population size that is initially present. For
instance, if the maximum possible population of catfish in a pond is 100 and initially
there were 70 catfish, then we would have xy = 70/100 = 0.7.

The next basic assumption in using equation (1) to model population size is that
the iterates of xj represent the fraction of the maximum possible population present
after each successive time interval. That is,

f(xp) = x; is the fraction of the maximum population after the first time interval

f(x1) = x, is the fraction of the maximum population after the second time interval
and, in general,
f(xy—1) = x, is the fraction of the maximum population after the nth time interval

It is important to note that the function f(x) does not represent the size of the pop-
ulation. The population size after n time intervals is given by

X, + (the maximum population) = f(x,_;) - (maximum population)

In a given study, the time intervals might be measured, for example, in years, in
months, or in breeding seasons. The constant k in equation (1) is the growth parameter;
it is related to the rate of growth of the particular population being studied. Science
writer James Gleick has described k this way: “In a pond, it might correspond
to the fecundity of the fish, the propensity of the population not just to boom but
also to bust. . . .” [Chaos: Making a New Science (New York: Viking Penguin,
Inc., 1988)]

EXAMPLE

Using Iteration in Analyzing Population Size

In the Mississippi Delta region, many farmers have replaced unproductive cotton
fields with catfish ponds. Suppose that a farmer has a catfish pond with a maximum
population size of 500 and that initially the pond is stocked with 50 catfish. Also,
assume that the growth parameter for this population is k = 2.9, so that equation (1)
becomes

f(x) = 2.9x(1 — x) (2

Finally, assume that the time intervals here are breeding seasons.

(a) What is the value for x?

(b) Use Figure 5 to estimate the iterates x; through xs. Then use a calculator to com-
pute these values. Round the final answers to three decimal places. Interpret the
results.

(¢) Asindicated in Figure 5, the iteration process is spiraling in on a fixed point of the
function. (Figure 6 later in this section will demonstrate this in greater detail.)
Find this fixed point and interpret the result.
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Figure 5

The first ten iterations of xo = 0.1

under f(x) = 2.9x(1 — x).

SOLUTION

0.87

0.7

0.67

0.57

0.47

037

027

0.1

0 01 02 03 04 05 06

initial population 50

(@) x, = = =01

maximum population 500

(b) In looking at Figure 5, it appears that x;, the first iterate of xy, is between

0.25 and 0.30, much closer to the former number than the latter. As an estimate,
let’s say that x; is about 0.26. This and the other estimates are given in Table 2.
Suggestion: Make the estimates for yourself before looking at the estimates we
give. Some slight discrepancies are okay. In the bottom row of Table 2 are the
values of the iterates obtained using a calculator. You should verify these for
yourself. (There should be no discrepancies here.)

The results in Table 2 tell us what is happening to the population through the
first five breeding seasons. From an initial population of 50 catfish, the popula-
tion size steadily increases through the first three breeding seasons (the numbers
in the table are getting bigger). The population size then drops after the fourth
breeding season and goes back up after the fifth season. (These facts can be de-
duced from Figure 5, as well as from Table 2.) To compute the actual numbers of

Iterates of x, = 0.1 Under the Function f{x) = 2.9x(1 — x)

(calculator values rounded to three decimal places)

Xq X2 X3 X4 Xs

From Graph 0.26 0.56 0.71 0.58 0.70
From Calculator 0.261 0.559 0.715 0.591 0.701
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Catfish Population

n 0 1 2 3 4 5
Number of Fish After
n Breeding Seasons 50 131 280 358 296 351

fish, we need to multiply each number in the bottom row of Table 2 by 500.
(Remember that the iterates in Table 2 represent fractions of the maximum pos-
sible population size 500.) For example, to compute the actual number of fish
at the end of the third breeding season, we multiply the initial population size of
500 by x3:

x; X 500 = 0.715 X 500
~ 358 catfish

The number of catfish at the end of each of the other breeding seasons is obtained
in the same manner. See Table 3; use your calculator to check each of the entries in
the table.

(c) The fixed point we are looking for occurs when the parabola in Figure 5 inter-
sects the line y = x. So, following the method in Example 1, we need to solve the
equation 2.9x(1 — x) = x. We have

29x(1 —x) = x
—29¢ +19x =0
x(—29% +19) =0

Therefore, x = 0 or —2.9x + 1.9 = 0, that is,

‘= —-1.9 _ 19 ~ 0.655 using a Calc‘u]ator and rounding
-29 29 to three decimal places

This shows that there are two fixed points for the function f, namely, O and 19/29.
Looking at Figure 5, we know that 19/29 is the fixed point that we are interested
in here, not 0. So the iterates of xo = 0.1 are approaching the value 19/29, which
is approximately 0.655.

We now summarize and interpret the results. There were initially 50 catfish
in a pond that could hold at most 500. As we saw in part (b), the population
size increases over the first three breeding seasons. After this, as Figure 5 shows,
the population oscillates up and down but draws closer and closer to an equilib-
rium population corresponding to the fixed point x = 19/29. This equilibrium
population is

1
19 X 500 = 328 catfish |
29

We conclude this section with some pictures indicating only three of the many
possibilities that can arise in the iteration of quadratic functions of the form
f(x) = kx(1 — x). Figure 6 concerns the function with growth parameter k = 2.9
that we used in the catfish example: f(x) = 2.9x(1 — x). In Figure 6(a) we’ve carried
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(a) The iteration process for the first 20 iterates. (b) The iterates approach a number between 0.6 and 0.7.

Figure 6

The iteration of f(x) = kx(1 — x) with growth parameter k = 2.9 and xo = 0.1.

out the iteration of xo = 0.1 through the twentieth iterate. (In the catfish example,
Figure 5 goes only as far as the tenth iterate.) Figure 6(a) indicates quite clearly that
the iterates are indeed approaching a fixed point of the function. Figure 6(b) pre-
sents another way to visualize the long-term behavior of the iterates. Values of n are
marked on the horizontal axis, values of the iterates x,, are marked on the vertical
axis, and the points with coordinates (n, x,) are then plotted. For example, since
xo = 0.1, we plot the point (0, 0.1); and since x; = 0.261, we plot the point (1, 0.261).
The line segments in Figure 6(b) are drawn in only to help the eye see the pattern
that is emerging. Three facts that can be inferred from Figure 6(b) are as follows:
After the first few iterates, the iterates oscillate up and down; the magnitude of
the oscillations is decreasing; and, in the long run, the iterates are approaching a
number between 0.6 and 0.7. (In Example 2 we found this value to be approxi-
mately 0.655.)

Unlike the iteration pictured in Figure 6(a), Figure 7(a) shows a case in which the
iteration process is spiraling away from, rather than toward, a fixed point. Again,
we’ve used the initial input xo = 0.1, but this time the growth parameter is k = 3.2.
As indicated in Figure 7(b), the long-term behavior of the iterates becomes quite pre-
dictable: they alternate between two values. Figure 7(b) shows that the smaller of
these two values is between 0.5 and 0.6, while the larger is approximately 0.8.
Exercise 36 gives you formulas for computing these two limiting values for the iter-
ates. (They turn out to be, approximately, 0.513 and 0.799.)

In Figure 8, once again we take the initial input to be xp = 0.1, but this time
the growth parameter is k = 3.9. Now the iterates seem to fluctuate widely with
no apparent pattern, in sharp contrast to the previous two figures, in which there
were clear patterns. Phenomena such as this are the subject of chaos theory, a new
branch of twentieth-century mathematics with wide application. [For a readable and
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nontechnical introduction to this relatively new subject, see James Gleick’s Chaos:
Making a New Science (New York: Viking Penguin, Inc., 1988). For a little more detail
on the mathematics, see the paperback by Donald M. Davis, The Nature and Power of
Mathematics (Princeton, N.J.: Princeton University Press, 1993), pp. 314-363.]
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(a) The iteration process for the first 25 iterates. (b) The iterates alternately approach two numbers. These
numbers are approximately 0.513 and 0.799.

Figure 7

The iteration of f(x) = kx(1 — x) with growth parameter k = 3.2 and xp = 0.1.
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(a) The iteration process for the first 25 iterates. (b) The iterates fluctuate widely; no clear pattern emerges.

Figure 8
The iteration of kx(1 — x) with growth parameter k = 3.9 and xy = 0.1.



4.3.10

EXERCISE SET
A

In Exercises 1-16, find all real numbers (if any) that are fixed
points for the given functions.
1. f(x) = —4x+ 5 2. glx) =3x— 14
.G =%+x 4. F(x) = (7 — 2x)/8
5 h(x)=x*—3x—5 6. Ht)=3>+ 18— 6
7. f6) = —t+ 1 8. FO=*—-1—1
9. k() =1>—12 10. KO =>+ 12
11. T(x) = 1.8x(1 — x) 12. T(y) = 3.4y(1 — y)
13. g(u) = 2u®> + 3u — 4 14. G(u) = 3u*> — 4u — 2
15. fx) =7+ Vx — 1 16. f(x) = V10 + 3x — 4
@ In Exercises 17-22:

(a) Graph each function along with the line y = x. Use the

graph to determine how many (if any) fixed points there are
for the given function.

(b) For those cases in which there are fixed points, use the

17.
19.
21.
23.

24,

zoom-in capability of the graphing utility to estimate the
fixed point. (In each case, continue the zoom-in process
until you are sure about the first three decimal places.)

f)=x>+3x+2 18. g0) =x3—3x+2

h(x) = x> — 3x — 3.07 20. k(x) = x> — 3x — 3.08

s =t*+3r—-2 2. ut)=t*+3t+2

This exercise refers to the function g(x) = x> — 0.5 in

Figure 3 in the text.

(a) Use the quadratic formula to verify that one of the
fixed points of this function is (1 — V/3)/2, then use
your calculator to check that this is approximately
—0.366.

(b) According to the text, the iterates of —0.1 approach
the value determined in part (a). Use your calculator:
which is the first iterate to have the digit 3 in the first
decimal place?

(¢) Use your calculator: Which is the first iterate to have
the digit 6 in the second decimal place?

This exercise refers to the function f(x) = x? in Figure 4

in the text. According to the text, the iterates of 1.25

move farther and farther away from the fixed point 1.

In this exercise you’ll see that iterates of other points

even closer to the fixed point 1 nevertheless are still

“repelled” by 1.

(a) Letxo = 1.1. Use your calculator: Which is the first it-
erate to exceed 10?7 Which is the first iterate to exceed
one million?

(b) Letxy = 1.001. Use your calculator: Which is the first
iterate to exceed 2? Which is the first iterate to exceed
one million?

(c) Letxo = 0.99. Compute x; through x( to see that the
iterates are indeed moving farther and farther away
from the fixed point 1. What value are the iterates ap-
proaching? Is this value a fixed point of the function?

25. The accompanying figure shows the first eight steps in the

iteration process for f(x) = —0.7x + 2, with xo = 0.4.

2.07 —
y=x

1.67

1.21

0.8 7

fx)= =07x+2

0.47

0 t t t t t t t t d

0 0.4 0.8 1.2 1.6 2.0

(a) Complete the following table. For the values obtained
from the graph, estimate to the nearest one-tenth; for
the calculator values, round the final answers to three
decimal places.

X1 X2 X3 X4 X5 Xe X7 Xg

From Graph

From Calculator

(b) The figure shows that the iterates are approaching a
fixed point of the function. Determine the exact value
of this fixed point and then give a calculator approxi-
mation rounded to three decimal places.

(c) In the table for part (a), you used a calculator to com-
pute the first eight iterates. Which of these iterates is
the first to have the same digit in the first decimal place
as the fixed point?

26. The figure on the next page shows the first six steps in the

iteration process for f(x) = 2.9x(1 — x), with xo = 0.2.

(a) Complete the following table. For the values obtained
from the graph, estimate to the nearest 0.05, or closer
if you can. For instance, to the nearest 0.05, the first
iterate is 0.45. But, since the graph shows the iterate a
bit above 0.45, the estimate 0.46 would be better. For
the calculator work, round the final answers to three
decimal places.

X1 X2 X3 X4 Xs Xe

From Graph

From Calculator




0.87

0.7

0.67

0.57
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y=x

flx)=2.9x(1 — x)

0.4

0.3

0.27

0.17

Figure for Exercise 26 0 01 02

(b) The figure shows that the iterates are approaching a
fixed point of the function. Use the figure to estimate,
to the nearest 0.05, a value for this fixed point. Then
determine the exact value of this fixed point, and also
give a calculator approximation rounded to three deci-
mal places.

(¢) In the table for part (a), you used a calculator to
compute the first six iterates. Which of these iterates is
the first to have the same digit in the first decimal place
as the fixed point? Remark: Agreement in the second
decimal place doesn’t occur until the 26th iterate.

For Exercises 27 and 28, refer to the figure on page 4.3.12,
which shows the first nine steps in the iteration process for
f(x) = 4x(1 — x), with xo = 0.9. (Qualitatively, note that this
figure is quite different from those in the previous two exercises
or in Figures 2 through 7 in the text. Here, no clear pattern in
the iterates seems to emerge.)

27. Complete the following table. For the values obtained from
the graph, estimate to the nearest 0.05, or closer if you can.
For instance, to the nearest 0.05, the first iterate is 0.35. But
since the graph shows the iterate a bit above 0.35, the esti-
mate 0.36 would be better. For the calculator work, round
the final answers to three decimal places.

0.3

04 05 06 07 08 09 10

X1 X2 X3 X4 X5 Xe¢ X7 Xg Xg

From Graph

From Calculator

28.

AsinExercise 27, we work with the function f(x) = 4x(1 — x).
Furthermore, in part (a) we use an input that is very close to
the one in Exercise 27. As you will see, however, the results
will be remarkably different. This phenomenon, whereby a
very small change in the initial input results in a completely
different pattern in the iterates, is called sensitivity to initial
conditions. Sensitivity to initial conditions is one of the
characteristic behaviors studied in chaos theory.
(a) For the initial input, use xy = é(S + \fS) =~ (0.9045.
Note that this differs from the input in Exercise 27
by less than 0.01. (Exercise 36 shows how this seem-
ingly off-the-wall input was obtained.) Use algebra
(not a calculator!) to compute exact expressions for
x1 and x,. What do you observe? What are x3 and x4?
What’s the general pattern here? Note: If you were
to use a calculator rather than algebra for all of this, due
to rounding errors you could miss seeing the patterns.
(b) Take xo = 0.905. Use a calculator to compute x;
through x1o. Round the final results to three decimal
places. Is the behavior of the iterates more like that in
Exercise 27 or in part (a) of this exercise?
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As background for Exercises 29-32, you need to have read
Example 2 in this section. As in Example 2, assume that there

is a catfish pond with a maximum population size of 500 catfish.
Also assume, unless stated otherwise, that the initial population
size is 50 catfish (so that xy = 0.1).

29. (a) In Example 2 we used a growth parameter of k = 2.9
and we computed the first five iterates of xo = 0.1.
Now (under these same assumptions) compute X
through x5, given that xpp = 0.64594182. Round your
final answers to four decimal places.

Use the results in part (a) to complete the following
table. [Compare your table to Table 3 in the text; note
that the population size continues to oscillate up and
down, but now the sizes of the oscillations are much
smaller. This provides additional evidence that the
population size is approaching an equilibrium value.
(In Example 2 we determined this equilibrium size to
be about 328 catfish.)]

20

(b)

n 21 22 23 24 25

Number of Fish After
n Breeding Seasons

03

0.4 0.5 0.6 0.7 0.8 0.9 1.0

(¢) In parts (a) and (b) and in Example 2 we worked with
a growth parameter of 2.9, and we found that the iter-
ates of xo = 0.1 were approaching a fixed point of the
function. Now assume instead that the growth para-
meter is k = 0.75 (but, still, that xo = 0.1). Determine
the iterates x; through xs. (Round to five decimal
places.) Are the iterates approaching a fixed point
of the function f(x) = 0.75x(1 — x)? Interpret your
results.

30. Asin Example 2, take xo = 0.1, but now assume that the
growth parameter is kK = 3, so that equation (1) in the text
becomes f(x) = 3x(1 — x).

(a) Complete the following tables. (Round the final an-
swers for the iterates to three decimal places.) Notice
that after the third breeding season, the population
oscillates up and down, as in Example 2.

n 0 1 2 3 4 5
) 0.1

Number of Fish After

n Breeding Seasons 50




n 6 7 8 9 10

Xn

Number of Fish After
n Breeding Seasons

(b) Complete the following table, given that
X100 = 0.643772529. Round your final answers for the
iterates to four decimal places. In your results, note
that the population continues to oscillate up and down,
but that the sizes of the oscillations are less than those
observed in part (a).

n 101 102 103 104 105 106

Xn

Number of Fish After
n Breeding Seasons

(¢) The iterates that you computed in parts (a) and
(b) are approaching a fixed point of the function
f(x) = 3x(1 — x). Find this fixed point and the corre-
sponding equilibrium population size.

31. (a) Asin Example 2, take xp = 0.1, but now assume that
the growth parameter is k = 3.1, so that equation (1) in
the text becomes f(x) = 3.1x(1 — x). Complete the fol-
lowing three tables. For the third table, use the fact that
X0 = 0.56140323. Round your final answers for the
iterates to four decimal places.

n 0 1 2 3 4 5

Xn 0.1

Number of Fish After
n Breeding Seasons 50

n 6 7 8 9 10

Xn

Number of Fish After
n Breeding Seasons

n 21 22 23 24 25 26

Xn

Number of Fish After
n Breeding Seasons

(b) Your results in part (a) will show that the population
size is oscillating up and down, but that the iterates
don’t seem to be approaching a fixed point. Indeed,
determine the (nonzero) fixed point of the function
f(x) = 3.1x(1 — x). Then note that the successive iter-
ates in part (a) actually move farther and farther away
from this fixed point.

32.

33.
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(c) It can be shown that the long-term behavior of the iter-
ates in this case resembles the pattern in Figure 7(b) on
page 4.3.9; that is, the iterates alternately approach two
values. Use the following formulas, with k = 3.1, to
determine these two values a and b that the iterates are
alternately approaching. (The formulas are developed
in Exercise 36.) Round the answers to four decimal
places. Check to see that your answers are consistent
with the results in part (a).

1 +k+Vk—3)(k+1)

a= 2%
L Ltk V&= 36T
a 2k

(d) What are the two populations corresponding to these
two numbers a and b?

As in Example 2, assume that the maximum population size

of the pond is 500 catfish, but now suppose that the growth

parameter is kK = 0.6.

(a) Suppose that the initial population is again 50 catfish,
so that xo = 0.1. Compute the first 10 iterates. Do they
appear to be approaching a fixed point? Interpret the
results.

(b) Follow part (a), but assume that the initial population is
450, so that xy = 450/500 = 0.9.

(c) What relationship do you see between the iterates in
part (a) and in part (b)?

Suppose that ¢ and d are inputs for a function g and that
g(c) = d and g(d) = c. Then we say the set {c, d} is a
2-cycle for the function g.

(a) Assuming that {c, d} is a 2-cycle for the function g, list
the first six iterates of ¢ and the first six iterates of d.
Describe in a complete sentence or two the pattern you
see.

(b) The following figure shows the iteration process for
the function 7(x) = 1 — |2x — 1|, with initial input
xo = 0.4. Use the figure to list the first six iterates
of 0.4 under the function 7.

1.OT

0.871

0671

0.4 71

0271

Tx)=1—[2x—1|
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(c) In the following sentence, fill in the two blank spaces
with numbers: The work in part (b) shows that {__, __}
is a 2-cycle for the function 7.

(d) In part (b) you used a graph to list the first six iterates
of xp = 0.4 under the function 7(x) = 1 — |2x — 1|.
Now, using a calculator (or just simple arithmetic), actu-
ally compute x; and x; and thereby check your results.

34. As background for this exercise, you need to have worked

35.

part (a) in the previous exercise so that you know the defi-

nition of a 2-cycle.

(a) The curve in the following figure is the graph of the
function Q(x) = x> — 7. Use the figure to list the first
six iterates of —3 under the function Q. Also, list the
first six iterates of 2.

-5 T Ox)=x2-7

5 3 10123456

(b) In the following sentence, fill in the two blank spaces
with numbers: The work in part (a) shows that {__, __}
is a 2-cycle for the function Q.

(¢) In part (a) you used a graph to list the first six iterates
of —3 under the function Q. Now, using the formula
Q(x) = x* — 7, actually compute x; and x, and thereby
check your results.

(d) Use your calculator to compute the first six iterates of
Xo = —2.99 under the function Q(x) = x> — 7. Note that
the behavior of the iterates is vastly different than that
observed in part (a), even though the initial inputs differ
by only 0.01. (As pointed out in Exercise 28, this type of
behavior is referred to as sensitivity to initial conditions.)

Letf(x) = 4x(1 — x). In this exercise we find distinct inputs

a and b such that f(a) = b and f(b) = a. As indicated in

Exercise 33, the set {a, b} is called a 2-cycle for the function f.

(a) From the equation f(a) = b and the definition of f,
we have

4a(l —a)=b (1)

Likewise, from the equation f(b) = a and the definition
of f, we have

4b(1 = b) = a )

Subtract equation (2) from equation (1) and show that
the resulting equation can be written

4b—-a)b+a—-1)=b—a 3)

(b) Divide both sides of equation (3) by the quantity b — a.
(The quantity b — a is nonzero because we are assum-
ing that a and b are distinct.) Then solve the resulting
equation for b in terms of a. You should obtain

bzg—a 4)

(¢) Use equation (4) to substitute for b in equation (1).
After simplifying, you should obtain

164> —20a + 5 =0 5)

(d) Use the quadratic formula to solve equation (5) for a.
You should obtain

a=(5=V5)/8
(e) Using the positive root for the moment, suppose
a = (5+V/5)/8. Use this expression to substitute for a
in equation (4). Show that the result is b = (5 — \/5)/8.
Now check that these values of a and b satisfy the condi-

tions of the problem. That is, given that f(x) = 4x(1 — x),
show that

a5 +ve)| =16-v5)

and

45 -ve)| =15+ v9)
Note: 1f we’d begun part (e) by using the other root
of the quadratic, namely, a = (5 — \/5)/8, then we
would have found b = (5 + V/5)/8, so no new infor-
mation would have been obtained. In summary, the
2-cycle for the function f consists of the two numbers
that are the roots of equation (5).

36. Let f(x) = kx(1 — x) and assume that kK > 0. Follow the

method of Exercise 35 to show that the values of @ and b
for which f(a) = b and f(b) = a are given by the formulas

1+ k+ Vk—3)k+ 1)
2k

and

1+k—V(k—-3)k+1)
2k

b_

Note that for £ > 3, both of these expressions represent real
numbers (because the quantity beneath the radical sign is
then positive). In summary: For all values of k greater than 3,
the function f(x) = kx(1 — x) has a unique 2-cycle {a, b},
where a and b are given by the preceding formulas.



37.

38.

(a) Letf(x) = 3.5x(1 — x). Use the formulas in Exercise 36
to find values for @ and b such that {a, b} is a
2-cycle for this function [that is, so that f(a) = b and
f(b) = a]. Exact answers are required, not calculator
approximations.

(b) The figure on the right shows the iteration process for
the 2-cycle determined in part (a). Use the answers in
part (a) to specify the coordinates of the four points
P,Q,R,and S.

Let f(x) = 3.2x(1 — x). Use the formulas in Exercise 36 to

determine the values of a and b such that {a, b} is a 2-cycle

for this function. Use a calculator to evaluate the answers
and round to three decimal places. [ You'll find that these
are the two numbers referred to in the caption for Fig-

ure 7(b) in this section.]
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fx)=3.5x(1—x)

Figure for Exercise 37



