March 26, 2013 sat.notebook

- **17.** In the regular pentagon above, with center at C, what is the value of *x*?
 - A. 36
 - B. 45
 - C. 60
 - **D.** 72
 - E. It cannot be determined from given

- **18.** In the regular octagon above, with center at P, what is the value of x?
 - A. 22.5
 - В. 45
 - C. 60
 - D. 67.5
 - E. 135

- **19.** In the figure above, the regular hexagon has a perimeter of 72. What is the area of the hexagon?

 - $108\sqrt{3}$ (approximately 187.06)
 - C. 216
 - D. $216\sqrt{2}$ (approximately 305.47) E. $216\sqrt{3}$ (approximately 374.12)

20. Quadrilateral *ABCD* is a square with sides of 4 units as shown above. Triangle *FDC* is isosceles such that DF = CF. \underline{F} is the midpoint of \overline{FD} and G is the midpoint of \overline{FC} . What is the area of the shaded region?

sat.notebook

26. In the figure above, square *ABCD* is inscribed within a circle of radius $3\sqrt{2}$.

What is the perimeter of ABCD?

- A. 12 B. $12\sqrt{2}$ C. 24 D. $24\sqrt{2}$ E. 36

27. In the figure above, *ABCD* is a rectangle having a perimeter of 30. What is the perimeter of the figure above?

- Ingure above?

 A. $51\sqrt{5}$ B. $37+7\sqrt{5}$ C. $37+7\sqrt{2}+7\sqrt{3}$ D. $37+14\sqrt{2}$ F. $51+7\sqrt{5}+7\sqrt{3}$

14. What is the circumference of a circle whose area is 8π?

- **15.** For the concentric circles above, with center at C, the shaded region has an area of 11π . What is the radius of the larger circle?
 - A. $\sqrt{2}$ B. $\sqrt{7}$ C. 3

 - D. √15 E. 4

16. The ratio of the areas of two circles is 9π to 4π . What is the ratio of the circumferences of these two circles?

What is the area of the following square, if the length of BD is $2\sqrt{2}$?

- (A) 1 (B) 2 (C) 3 (D) 4 (F) 5

The square ABCD touches the circle at 4 points. The length of the side of the square is 2 cm. Find the area of the shaded region.

- (A) $\pi 4$ (B) $2\pi 4$ (C) $3\pi 4$ (D) $4\pi 4$ (E) $5\pi 4$

A 2

B $\frac{1}{2}$

14. The triangles inside $\triangle ABC$, shown above, are formed by joining the midpoints of the sides and then repeating the process. If a point is chosen at random inside $\triangle ABC$, what is the probability that the point lies in the shaded region?

5. A dart hits the board. Which is the probability that it will hit in region II?

- O A. $\frac{9}{20}$
- O B. $\frac{6}{13}$
- O C. $\frac{1}{4}$
- O D.

	10"	30"
15"	I	п
10"	III	IV

Each figure represents a dartboard. Find the probability of landing in the shaded region.

Each figure represents a dartboard. Find the probability of landing in the shaded region.

4.

5

6.

